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We have performed a parametric study of self-propagating chain reactions along a one-dimensional bead-
spring array. The coupling between beads is modeled using harmonic and anharmonic Fermi-Pasta-Ulam
�FPU�-� and �4 potentials. The parameters that define the system are the activation energy �Ea� of the reactive
group and the fraction ��� of the reaction enthalpy that is converted to the kinetic energies of the reacted
products. The mean conversion for a 100-bead lattice was investigated as a function of these handles. Assem-
blies of pristine chains with reactive groups having Ea�25 kcal /mol are shown to be inherently unstable. At
loads of 3–4 energetic molecules/bead �Ea=35 kcal /mol, �=0.7�, the FPU and harmonic lattices behaved
similarly with reaction velocities ranging between 8 and 8.5 km/sec. The �4 lattice exhibited lower conversions
along with the formation of a reaction initiation zone where the velocity was at least half of the bulk value at
the aforementioned loads. Fourier analyses of the kinetic energy traces of the �4 lattice revealed that only
high-frequency excitations led to viable wave propagation, which explains the prominence of the start-up zone
at lower loadings of the energetic molecules. High velocity reaction waves are only observed in perfect crystal
arrays. The presence of defects in the chain, i.e., beads with weaker force constants, hampers the progress of
the wave.
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I. INTRODUCTION

One-dimensional �1D� chains with different potential
functions have been extensively studied with respect to their
dynamical properties,1 shock waves,2–4 bond dissociation,5

energy relaxation,6,7 and pulse propagation.8,9 We use this
simple platform to model sustained chain reactions that
propagate in a single dimension, as along the backbone of a
carbon nanotube. Single-walled carbon nanotubes �SWNT�
are cylindrical graphene sheets10,11 that have high thermal
conductivities, as shown by considerable theoretical12–16 and
experimental17,18 efforts. Energetic groups bonded to the lat-
tice react such that the energy released is coupled back into
the nanostructure and directed along the backbone to propa-
gate the reaction. The hypothesis is that the reduced dimen-
sionality of the nanostructure should be able to guide and
accelerate the reactions along a preferred orientation. Apart
from their utility as thermal interface materials,19,20 the
quasi-one-dimensional nature of SWNT also holds prospects
for applications as waveguides based on past work on con-
fined propagation of x-rays21 and thermal neutrons22 through
them.

Force fields allowing n-dimensional �n�1� motion of
the beads in a chain have been developed for fracture
studies,23,24 elastic deformations and self-assembly
phenomena,25 and simulations of the nanomechanics of
single-walled carbon nanotubes.26 Coarse-graining a com-
plex three-dimensional �3D� molecule deprives it of most of
its vibrational modes; however, it leads to a significant re-
duction in computation time in order to easily access pico-
second time scales. The Zhigilei model26 includes a potential
corresponding to breathing modes that describes the internal
degrees of freedom of the structure.27–29 Their effect, along
with that of torsion, were seen to be minimal in the case of
isolated nanotubes.26 In this work, we have used the Buehler
model25 as a simple representation of a carbon nanotube. The
bond-stretch component of the total potential energy uses a
bilinear expression derived from a harmonic potential, which

accounts for nonlinearities up to a limit. Anharmonic poten-
tials have been shown to produce solitons30,31 and breathers32

in crystal lattices. The mobility of high-energy fluctuations in
a one-dimensional lattice depends on the type of nonlinearity
present in the force field. The fluctuations may result in lo-
calized high-frequency oscillations in a lattice with an onsite
potential characterized by the hard �4 term,33 which leads to
the so-called “diagonal anharmonicity”34—the interactions
between neighboring beads is purely harmonic, while the
anharmonicities are inherent within each oscillator, as repre-
sented by the onsite potential. Confined high-frequency
oscillations—“breathers”—adversely affect the thermal con-
duction properties of the crystal due to the localization of
energy.33,35 The mobility of such oscillations is greatly en-
hanced through the use of an “off-diagonal” nonlinearity36

such as the classic Fermi-Pasta-Ulam � �FPU-�� lattice.1 In
this case, the anharmonicity is embedded in the interbead
interactions. From a mathematical standpoint, a “diagonal”
or off-diagonal anharmonicity depends on the positions of
nonlinear terms in the force-constant matrix of the system of
oscillators.

We seek to harness the one-dimensionality and thermal
conductivity of SWNT in modeling and simulating chain re-
actions of energetic molecules �EM� that have been co-
valently attached to the nanotube sidewall. A continuum
model that describes the use of SWNT as thermal conduits
has been framed,37 but here we aim to track the directed
thermal transfer process at the molecular scale. There is a
wealth of experimental data on the reactions of metallic and
semiconducting nanotubes with diazonium salts bearing OH,
Cl, and NO2 functional groups.38–41 The same techniques can
be used to functionalize SWNT with reactive molecules
whose thermal decomposition reactions are highly exother-
mic. Molecular analogs of trinitrotoluene �TNT� and cyclo-
trimethylenetrinitramine �RDX� may be covalently bonded
to the nanotube surface for this purpose. We have experimen-
tally explored laser-ignited reactions and the concomitant
thermopower generation in RDX-coated carbon nanotube ar-
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rays. The superior thermal conduction of the nanotube back-
bone leads to a higher reaction velocity as compared to a
pure RDX crystal. This amplified anisotropic velocity could
aid in the creation of nanothrusters that exceed the specific
impulse of any system demonstrated to date. An electrical
wave is generated in the same direction as the thermal wave,
which could supply nanoscale electronic devices with ex-
tremely high power densities. The current theoretical study is
confined to the thermal propagation brought about by highly
exothermic chain reactions in a coarse-grained lattice.

Each bead in the lattice is loaded with energetic molecules
at a specified density. An excitation applied at one end of the
chain is expected to raise the local temperature at the reac-
tion sites leading to the decomposition of the group. The
one-dimensionality can be used to channel the energy re-
leased during combustion and facilitate subsequent reactions.
We seek to identify conditions under which sustained chain
reactions are feasible. The following system parameters are
varied: �a� activation energy of the reaction, Ea; �b� fraction
of the reaction enthalpy that is converted into the kinetic
energy �KE� of the reacted fragments, �. In the simulations,
we have allowed � to vary from 0 to 1. Zones of chemical
stability of the nanostructure as well as the velocity of the
reaction wave have been mapped out. A Fourier analysis of
the time-series of the kinetic energy of the lattice was per-
formed to determine the modes that were responsible for the
propagation of a disturbance through the lattice. The effect of
loading of the EM has also been studied for pristine and
defect-laden chains.

We emphasize that although the bead-spring array uses
parameters for a specific force field in the literature,25 our
conclusions are not limited by this. In nondimensionalizing
the equations of motion, the force constants have been scaled
with respect to the tensile spring constant, which makes the
model and the analysis generic. We have also introduced
additional terms to account for anharmonicities for compari-
son, and this allows one to study their implications for non-
linear dynamics. The results presented in this paper are ap-
plicable to a broad class of idealized, one-dimensional
oscillators. We refer to the force field describing the mechan-
ics of carbon nanotubes only as a way to motivate experi-
mental realization. We are aware that a quantitative compari-
son between the 1D array and the complex 3D molecular
structure of a nanotube is impossible. Therefore, we try to
establish a qualitative bridge between these two cases, set
design criteria, and predict what may be observed when fu-
ture experiments are performed in the laboratory.

II. MODEL DEVELOPMENT

A. Types of Lattices

The Hamiltonian �H� for a system of N oscillators as a
function of the individual momenta �pi�, masses �mi� and
position vectors �r�i� is

H = �
i=1

N
pi

2

2mi
+

1

2
�V��r�i+1 − r�i� − r0�

+ V��r�i − r�i−1� − r0�� + U��r�i − r�i0�� , �1a�

where V��ij� is the interaction potential, and �ij is the devia-
tion of the i-j bond length from its equilibrium value, r0
�10 Å�; U��i� is the onsite potential, with �i denoting the
displacement of the ith oscillator from its equilibrium posi-
tion, ri0. The analytical forms of V��ij� and U��i� change
according to the type of lattice used. The nondimensionaliza-
tion of Eq. �1a� yields a time scale �tsc, Eq. �1b�� that depends
on the tensile force constant �ks=1000 kcal /mol /Å2� and
the total mass in terms of the mass of a bead �mb
=1953 amu�, the mass of the reactive group �me� and the
total number of energetic groups loaded on each bead �n0�.
The value of me depends on the reactive molecule chosen.
For a given energy input, larger values of mb or r0 would
adversely affect thermal propagation through the lattice due
to the following reasons, respectively: �i� increased inertia of
each bead; �ii� greater distance required for energy transfer to
take place between neighboring beads.

tsc =�mb + n0me

ks
. �1b�

The details of the harmonic potential in Eq. �2� along with
the associated parameters have already been outlined in pre-
vious papers by Buehler and co-workers.23–25

V��ij� =
ks

2
�ij

2 . �2�

In the following expressions for anharmonic lattices, the
emphasis will be on the tensile component of the force field,
since the bond-angle and Lennard-Jones contributions will
remain unchanged. The FPU-� lattice has a quartic term in
addition to the harmonic portion and no onsite potential,
U��i�.

Vij��ij� =
ks

2
�ij

2 +
ks�

4
�ij

4 . �3�

The nonlinear term plays a greater role at higher deforma-
tions. The frequency of oscillation increases with the energy
input into the lattice, which results in a pulse propagating at
a higher speed and lower dispersion than in a harmonic
chain.8,9

The �4 lattice retains the pure harmonic interactions be-
tween beads but includes an external contribution in the form
of a nonzero onsite potential

U��i� =
k�

2
�i

2 +
k�
2

�i
4, �4�

which represents the effect of a substrate or the environment
of the chain on the motion of the ith bead. The nonlinearity is
embedded within the oscillator itself, thus resulting in diag-
onal anharmonicity. We have kept the same force constants
for the harmonic and nonlinear components of the interaction
potentials, i.e., ks�=ks and k�=k�=ks for the FPU-� and �4

chains, respectively.

B. Reaction Times

Reactions at the molecular scale are stochastic in nature
because of fluctuations in temperature and pressure. In order
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to predict the time at which one will occur and its position in
the chain of oscillators, we use Gillespie’s First-Reaction
Method.42 With the help of the Arrhenius formula, zeroth-
order rates for each bead �ki� are calculated in terms of the
activation energy �Ea� and the kinetic energy of the bead in
question �Ek,i�

ki�s−1� = 1013 exp�−
Ea

Ek,i
	 . �5�

The time at which a reaction will occur at the ith bead is
obtained by sampling the governing probability distribution
for a zero-th order reaction42

Pi�	�d	 = ki exp�− ki	�d	 . �6�

The reaction times �	� calculated are sorted in ascending
order and the bead with the smallest time is chosen. The
reaction location, 
, and time, 	
, can therefore be estimated
together. The Gillespie algorithm simulates a Markovian pro-
cess so only one reaction event is permitted within the time
step considered.42 If the activation energy is high enough, the
reaction will be a localized event. The smallest value of 	 at
a particular node implies that the latter is energetic enough to
satisfy the acceptance criterion for the reaction, which has
been detailed in the subsequent section.

C. Reaction Acceptance Criterion

We use the Gillespie algorithm42,43 to simultaneously pre-
dict the reaction location, 
, and time, 	
. Once a possible
reaction site has been located by this technique, it remains to
be seen whether it can be accepted or not. The metric we use
compares the computed reaction occurrence time �	
� with
the time scale of energy dissipation in a quiescent lattice. A
reaction may be accepted if a bead remains in an excited
state for a sufficiently long period. To estimate the dissipa-
tion time scale, a bead in the center of the chain was excited
and its KE was tracked as a function of time. The energy
correlation function was computed from this time series for
the FPU-� and the �4 lattices �Fig. 1�. Panel �i� shows that
relaxation occurs within one oscillation period �i.e., tsc� for
the FPU lattice, which is the norm for harmonic chains.34

Anharmonicities in the potential function cause the dissipa-
tion to occur over longer time scales,33 which is obvious for
the �4 lattice in panel �ii�, where at least three lattice time
steps are required to achieve dissipation. Using the informa-
tion in Fig. 1, we can execute a reaction if 	
� tsc �FPU-��
or 	
�3tsc ��4�. Despite the greater leeway given to the �4

lattice as compared to the FPU-�, we shall see that it has a
lower reactivity than the latter for the same energetic load.

When multiple energetic molecules are loaded on a single
bead, the coarse-grained nature of the system prevents us
from ascertaining the time at which each group will react. In
other words, the computed reaction time—	
—applies to the
entire node-reactive group assembly. We introduce stochas-
ticity by permitting nr energetic molecules on a bead to react
if nr	
�mtsc, where m=1 or 3 depending on the lattice con-
sidered. It is important to note that the dissipation time is a
lower bound because it has been estimated for a quiescent
lattice, i.e., one in which no reactions are taking place after
the initial excitation. When prior reactions have occurred, an
energetic bead will take longer to relax due to energy transfer
from its predecessors.

D. Energy Conversion

The total energy �TE� of the entire lattice before a reac-
tion event at a bead j depends on: �a� Ep—the potential
�PE�—and Ek—the kinetic �KE�—energies of the lattice; �b�
N, the number of beads; �c� n0, the EM loading on each bead;
�d� �H ��0�, the enthalpy of reaction of a single EM

TE = Ep + Ek − N�n0�H� . �7a�

The last term gives the total energy stored in the EM-bead
bonds. After nr ��n0� reactions have taken place at j, TE
may be rewritten in terms of the new PE �Ep�� and KE �Ek�� of
the lattice and the heat lost to the surroundings �Q�

TE = Ep� + Ek� − �Nn0 − nr��H + Q . �7b�

The part of the reaction enthalpy that has not been lost par-
titions into the PE and KE of the affected bead. We shall now
probe each term in the above equations for greater clarity:

�a� The lattice PE is assumed to remain invariant because
the change in conformation due to the reaction is highly
localized. This is plausible when the number of beads is
large.

�b� The lattice KE prior to the reaction is given by Ek

= 1
2�i=1

N �mb+n0me�ui
2. After nr reactions have occurred at

bead j, it is modified to

Ek� = 
1

2�
i�j

�mb + n0me�ui
2� + 
1

2
�mb�vb,j

2 + nrmeve
2�� .

�7c�

The first sum extends over the unreacted beads with the as-
sumption that their velocities are not altered by the reaction.
The second term is a sum of the KE of the reaction frag-
ments: �a� the bead to which n0-nr EM are still attached, with
a mass given by mb�=mb+ �n0−nr�me; �b� the center of mass
of the decomposition products of the nr energetic molecules.
The latter are not tracked individually, since we are con-

FIG. 1. �Color online� Estimation of the reaction acceptance
criterion for the �i� FPU and �ii� �4 lattices: The excited bead re-
laxes after 1 �3� oscillation period of the lattice for the FPU ��4�
case; the reaction is accepted if the computed time required for it is
less than tsc �3tsc�.
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cerned only with the effect of the reaction enthalpy on the
lattice.

�c� The amount of energy lost irreversibly to the surround-
ings as heat is parameterized as a fraction of the reaction
enthalpy. If a portion, �, of the energy released—nr�H—is
converted to useful work, then Q= �1−��nr�H.

Equating the total energy before and after the reaction and
substituting the expressions above, we get

2�nr�H = mb�vb
2 + nrmeve

2 − �mb + n0me�u2. �7d�

The velocities in Eq. �7d� can be expanded in terms of their
�x ,y ,z� components

2�nr�H = �
j=x,y,z

�mb�vb,j
2 + nrmeve,j

2 − �mb + n0me�uj
2�

= �
j=x,y,z

Ek,j , �7e�

where the right-hand side is the total KE across the spatial
dimensions. If � j is the fraction of �H available to dimen-
sion j, the left-hand side may be partitioned into 3 compo-
nents, 
 j, such that 
 j =� j�2�nr�H�. The total energy balance
can be split into dimensionwise portions with the appropriate
velocity components.


 j = mb�vb,j
2 + nrmeve,j

2 − �mb + n0me�uj
2. �7f�

In a given time step, only the final velocities—vb,j and
ve,j—are unknown. The simultaneous solution of Eq. �7f�
with the conservation of momentum in each spatial dimen-
sion,

�mb + n0me�uj = mb�vb,j + nrmeve,j , �7g�

yields them exactly

vb,j = uj ��
 j/�nrme�
��� − 1�

, �7h�

where �=
mb

nrme
+

n0

nr
. The choice of the sign is governed by

momentum conservation.

E. Evaluation of �

The parameter � j can be derived by assuming that the
direction cosines, cos � j =

uj

�u� � , remain invariant immediately
before and after the reaction. Here, � j is the angle made by
the velocity vector, u� , with the j axis, where j stands for
either x, y, or z. We suppose that during an infinitesimal time
interval after the reaction, the center of mass of the decom-
posed EM moves along the same trajectory as the unreacted
bead prior to the reaction. It is evident from Eq. �7h� that the
final velocity components of the reacted bead are functions
of 
 j, which itself depends on � j. Using the invariance of the
direction cosines and the fact that vb,j ��� j, � j is found to be

� j = cos2 � j �j = x,y,z� . �8�

Equation �8� has the following implication: if, for instance,
the angle made by the trajectory of the unreacted bead with
the x axis is smaller than those made with the other axes,
there is a greater likelihood of the energy released augment-

ing the x component of the reacted bead’s velocity.

III. RESULTS AND DISCUSSION

A. Parametric Study of Reactions

The number of beads in the chain �N� was fixed at 100.
We performed the analysis for loads of one to seven reactive
groups/bead. The energetic moiety used in the simulation is
trinitrobenzene diazonium with a molecular mass �me� of 212
amu. In this section, we have presented results for the 3–4
EM/bead cases while those for the remaining loads have
been included in the supplement.44 The heat of decomposi-
tion of TNT �2732.48 kJ/kg�45 was used as a representative
value for �H.

The first step was to ascertain the stability—a measure of
inertness of the lattice in the absence of ignition at 300
K—of the nanomaterial as a function of Ea and �. After
equilibration, the system was allowed to evolve for �7 ps
and reaction events were recorded. The average chemical
conversion is the ratio of the mean number of reaction events
over 100 independent trials to the number of beads in the
lattice. These conversions have been plotted in Figs.
2�a�–2�d� for different loads as a function of the 2 param-
eters. There exists a threshold of stability with spontaneous
reactions occurring when Ea�25 kcal /mol. Approximately
80% of the reactive groups react without an external stimulus
for Ea�20 kcal /mol; the obvious conclusion is that at low
activation barriers, the reaction sites are energetic enough to
obviate the need for a prior excitation. Most of the species
react haphazardly at room temperature thereby making the
assembly inherently unstable. This test establishes a lower
limit for the selection of molecules in the design of such
structures.

The effect of an excitation at t=0 was studied by permit-
ting all the reactive groups at the first bead to react uncon-
ditionally and tracking the progress of the reaction wave with
time. Figure 3 shows the total conversion as a function of the
system parameters for �a�–�c� harmonic, FPU and �4 lattices
at 3 reactive groups/bead, and �d�–�f� the respective lattices
at four reactive groups/bead. As the reactive group load in-
creases, a steep drop is observed between regions of almost
complete and no conversion. An upper bound on � is neces-
sary according to the second law of thermodynamics but this
has not been implemented in the current work. The random-
ization of energy into other vibrational modes and its dissi-
pation to the surroundings are reflected in lower values of �.
The latter phenomenon can be minimized by utilizing an
array of nanotubes such that the energy lost by one tube may
be captured by another thus maintaining a high effective �
for the entire structure.

While the conversion plots for the harmonic and FPU
systems are almost identical for the loads used, the �4 lattice
exhibits a lower conversion at each value of �. This can be
attributed to the poor thermal conduction characteristics of
the hard �4 potential.33 Nonlinear 1D lattices can support a
temperature gradient, as has been proved by nonequilibrium
molecular dynamics simulations.35,44,47 The approximate
thermal conductivity of each chain can be found by calculat-
ing the ratio of the time-averaged heat current to the applied
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temperature gradient.47–50 The thermal conductivity of the �4

lattice in our study is lower than that of the FPU chain by a
factor of �14.44

The difference between the harmonic and FPU lattices is
minimal due to the small displacements of the beads from
their equilibrium positions. As a result, the quartic term does
not play a significant role under the current energetic load-
ings. The use of a considerably higher reaction enthalpy will
be explored later to elicit the difference in the speed of wave
propagation in these two lattices. For loads of one reactive
group/bead or less �data not shown�, negligible differences

are observed between cases of finite and zero initial excita-
tion. This is understandable, since the sparse coverage of
en-ergetic molecules leads to minimal momentum exchange
with the bead in the event a reaction occurs. The probability
of a sustained reaction wave is therefore small; however, if
Ea is low enough, reactions will take place haphazardly
along the length of the chain. A minimum load of 3 EM/
bead—alternatively, one group/54 C atoms on the nanotube
basis—is required in order to generate a sustainable wave for
the �H under consideration. This load can be achieved ex-
perimentally, since extents of reaction of at least 1 diazonium

FIG. 2. �Color online� Stability
plots in terms of chemical conver-
sion without initial excitation for
three loadings: �a� 1 EM/bead,
�b� 2 EM/bead, �c� 3 EM/bead,
and �d� 4 EM/bead. The nano-
structures are unstable for Ea

�25 kcal /mol �dotted line�.

FIG. 3. �Color online� Chemical conversion plots for �a� harmonic, �b� FPU, and �c� �4 lattices at 3 EM/bead; �d�–�f� conversion plots
for the respective cases at 4 EM/bead after equilibration at 300 K and allowing the first bead to react.
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group per 20 carbon atoms have been observed previously.41

The reaction time �	� estimated by the Gillespie algorithm
is a random variable. Each panel in Fig. 4 shows the covari-
ance of these computed times, i.e., the effect of a reaction
event at node i on sites further along the chain as a function
of loading and the post-reaction energy available to the lat-
tice. The steadily increasing pixel intensities down the length
of the chain—along the main diagonal—indicate progres-
sively greater correlations between neighboring reactive
sites. For the harmonic lattice at loads of three and four
reactive groups/bead, we see in Figs. 4�a� and 4�b�, respec-
tively, that the variance in reaction times increases with load-
ing. The increased energy content of the lattice causes the
beads near the point of ignition to react within a constrained
set of times. With each successive reaction at subsequent
beads, more energy is deposited into the lattice accompanied
by the dispersion of the energetic pulse as it traverses the
harmonic chain.8,9 Consequently, the reaction front continu-
ously broadens and subjects the beads ahead to constant ex-
citation, thus enabling them to react before the front has
passed them by. Identical reaction conditions for the �4 lat-
tice present a contrary set of results �Figs. 4�c� and 4�d��
wherein the variance in reaction times decreases with in-
creasing loads and is also lower than the corresponding val-
ues for the harmonic system. This shows that a greater de-
gree of control over the progression of the reaction wave is
afforded by the nonlinear �4 potential as compared to the
harmonic.

In order to explain the above phenomenon, we examined
the change in the phonon density of states �DOS� of the �4

lattice with reactions at loads of 3–7 and 12 reactive
groups/bead.44 A band gap partitions the spectrum into low-
and high-frequency regions. The ratio of the area under the
high-frequency portion to the total spectral area was recorded
as a function of loading of the energetic molecules. The total

contribution of the higher modes is directly proportional to
the reactive group loading.44 In the next subsection, we shall
demonstrate that only signals with frequencies lying in the
higher end of the spectrum have a finite probability of trav-
eling through the �4 lattice. Therefore, energetic reactions
with a sparse coverage of reactive groups excite the low-
frequency modes to a greater extent, which have a limited
capacity to propagate in the �4 chain. This decreases the
efficiency of information transfer in the lattice and conse-
quently raises the uncertainty in reaction times.

B. Fourier Analysis

The phonon density of states is generally measured by
taking the Fourier transform of the velocity autocorrelation
function.51,52 The spectral analysis of the time-trace of the
kinetic energy of the lattice can also be used20,53 as a method
to estimate the DOS. The frequencies ��� have been ex-
pressed as multiples of the frequency of a lattice devoid of

energetic molecules ��0=� ks

mb
�. In order to understand why

the conversion in the �4 lattice is less than the FPU and
harmonic cases, it is important to analyze the DOS of each
lattice as shown in Fig. 5�a�. Additionally, we have mapped
out the range of frequencies that support signal transduction
in each lattice for a load of three reactive groups/bead. This
range was determined by a technique similar to that used by
Bowman et al. to obtain normal modes without a Hessian
using Driven Molecular Dynamics.54 The 50th bead in the
chain was driven at various frequencies and the total kinetic
energy of 40 beads on either side of the point of application
of the signal was recorded. It is clear that viable propagation
is possible at all the permitted frequencies �0���0.6� for
the FPU and harmonic chains; however, only high-frequency
signals �0.3���0.65� have nonzero probabilities of travel-
ing through the �4 lattice. The effects of specific driving

FIG. 4. �Color online� Covari-
ance of the computed reaction
times in units of sec2 for the �a�
and �b� harmonic, and �c� and �d�
�4 lattices with loads of �a�, �c� 3
EM/bead, and �b�, �d� 4 EM/bead
�Ea=35 kcal /mol, �=0.7�.
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frequencies ��d� are depicted in Fig. 5�b� for the �4 chain.
Each frequency, �d, has an optimal amplitude, �,44,54 whose
value is also shown in each panel. The ratio of the areas
under the regions labeled “1” and “2” in the bottom panel of
Fig. 5�a� has been plotted against the distance from the 50th
bead in Fig. 5�b�. This ratio is a measure of the relative
contributions of the low- and high-frequency modes to signal
propagation. The top and bottom panels in Fig. 5�b� show a
value close to 1 for the ratio, which remains almost constant
with distance from the driven bead, thus implying that no
energy transfer occurs between the higher and the lower
modes. This is not surprising, since the corresponding �d lie
in the forbidden range �i.e., �d�0.3 and �d�0.65�. The
central panel uses a driving frequency that lies in the permit-
ted range; despite the noise, a distinct increase is observed in
the ratio with distance, indicating that the role of the lower
modes gradually grows in importance as one moves away
from the driven bead. A transfer of energy takes place from
the higher modes to the lower modes. In other words, the
allowed high-frequency phonons from the point of excitation
disintegrate into their low-frequency counterparts, which are
responsible for the successful propagation of the wave.
When compared to the FPU and harmonic lattices where all
frequencies are allowed, only the upper half of the spectral
range in the �4 chain is capable of transmitting signals. Os-
cillations with ��0.65 become highly localized and possi-
bly lead to the formation of breathers. This reduced capacity
of the �4 chain to support signals of all permitted frequencies
explains the poor conduction, and hence, lower chemical
conversion when compared to the other two systems.

It is also of interest to determine whether a sustained re-
action wave is facilitated by the activation of certain modes
of oscillation in the harmonic lattice. Figure 5�c� shows the
power spectra for zero and three reactive groups/bead calcu-
lated at 300 K. The absence of modes in the frequency range

0.55���0.66 for the loaded chain �inset� is due to the fact
that its component beads are heavier than the unloaded case,
and the oscillation frequency is inversely proportional to
mass. A lattice undergoing chain reactions will have a mix of
completely reacted �i.e., lighter� and unreacted �i.e., heavier�
beads. The above frequency range will play an important role
in these circumstances especially since a rise in temperature
increases the phonon population at the band-edge. Addition-
ally, we see in the central panel of Fig. 5�a� that signals with
frequencies ��0.4 have a greater likelihood of penetrating a
lattice loaded with three reactive groups/bead. It is evident
that energy propagation in the lattice is carried out by the
low-frequency portion of the spectrum. Modes above �
=0.57 do not contribute to propagation at all but we will
show that they are capable of inducing reactions.

The results in Fig. 5�d� were computed by partitioning the
100-bead chain into two halves: beads 1–50 had no reactive
groups loaded, and beads 51–100 were equally loaded with a
finite number of molecules. The chain was thus split into
light and heavy segments, the former being akin to the por-
tion that lies behind the reaction front. The kinetic energies
of each bead were recorded over 2048 time steps for numeri-
cal convenience and averaged over 100 independent runs. No
reactions were executed during this timeframe, since the ob-
ject was to determine the coupling between beads of differ-
ent masses at the interface. The power spectra in Fig. 5�d�
correspond to two reactive group loads and have been plotted
for a light bead �50� and three heavy beads �51, 52, and 60�.
In the cases of two and three reactive groups/bead, it is evi-
dent that the coupling between the light and heavy beads is
conducive to the appearance of modes beyond the band-edge
�i.e., ��0.57� of the latter. The effect is most prominent for
the heavy bead that is directly connected to the lighter one,
and progressively decays further into the loaded portion of
the chain. We postulate that the presence of these localized

FIG. 5. �Color online� �a� Su-
perposition of the DOS for the
three lattices and the signal trans-
mission probability. �b� Ratio of
the contribution of lower modes
�area 1 in Fig. 5�a�� to their higher
counterparts �area 2 in Fig. 5�a��
at different driving frequencies
��d� and their respective optimal
amplitudes ���. �c� Fourier analy-
sis of kinetic energy time series
for the harmonic chain at 0 and 3
EM/bead. �d� Power spectra of
four individual harmonic beads in
the high-frequency range showing
the induction of modes in the
heavier beads �51, 52, 60� by the
lighter one �50�.
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high-frequency modes in the heavier—or unreacted—beads
causes them to react as soon as the preceding bead has re-
acted. A comparison of the two panels in Fig. 5�d� also
shows that it is easier to induce higher modes in the case of
lower EM loads �i.e., two versus three reactive groups/bead�
simply because of the difference in bead mass, and hence,
inertia.

C. Reaction Velocity Calculation

It is possible to extract the velocity of the reaction wave
and the associated confidence intervals from these simulated
data sets in the specific case of directional energy transfer.
Reaction events with probabilities of occurrence below 0.90
were neglected during this calculation. Figures 6�a�–6�c�
show the velocity calculations for three reactive groups/bead
for the �4, FPU and harmonic lattices, respectively, with
Ea=35 kcal /mol and �=0.7. The most probable reaction
times at n beads can be easily fit with a straight line, the
reciprocal slope of which is the velocity of the reaction
wave. In each plot, we have separately fitted the reaction
times at beads 1–3 and 4–13, respectively. This was neces-
sitated by the presence of a distinct start-up zone for the �4

lattice �Fig. 6�a��, where the velocity computed from the first
three beads �2.72 km/s� is a third of the bulk velocity com-
puted from the next 10 beads �8.16 km/s�. The FPU and
harmonic lattices show a comparatively negligible difference
in velocities between the two zones �Figs. 6�b� and 6�c��. At
a load of 3 EM/bead, the computed velocities are less than
the speed of sound in the lattice ��14 km /s� and are there-
fore below the detonation limit.

The contrast between the initial and bulk velocities is
clearly presented in Fig. 6�d� for two different loads of the
energetic material. The �4 velocities predicted from beads
4–13 lie in the same range as the corresponding values for

the other lattices within the 95% confidence intervals;55,56

however, the reaction wave definitely undergoes an activa-
tion phase, which depends on the energetic load used. This
conclusion is bolstered by the fact that the harmonic lattice
displays similar behavior at a sparse loading of two
groups/bead.44 Furthermore, the difference between the two
zones in the �4 lattice decreases as the loading is increased
from four to seven reactive groups/bead.44

The predicted reaction times in the FPU and harmonic
chains deviate considerably from the linear fit �Figs. 6�b� and
6�c�� as the distance from the ignition point increases. This
observation points towards an increase in the wave velocity
due to the energy injected into the lattice at each reacted
node. The �4 chain, on the other hand, adheres to the linear
reaction trajectory to a greater extent �Fig. 6�a�� even at
higher energetic loads.44 We have already seen that the vari-
ance in reaction times is less than the FPU and harmonic
cases. The �4 lattice therefore offers a greater degree of con-
trol over the reaction trend although the overall conversion
lags behind the other systems.

The reaction characteristics of the FPU-� and harmonic
lattices are almost identical for the 3 EM/bead �Figs. 6�b�
and 6�c�� and 4 EM/bead44 scenarios. Previous work by
Sarmiento et al.8 has proved that pulse propagation in a hard
anharmonic lattice occurs at speeds that exceed those in the
harmonic variant. Since the energetic loads used thus far
have been unable to distinguish between the two lattices, we
increased the reaction enthalpy by a factor of 20 while keep-
ing the load at two groups/bead. The corresponding velocity
calculations are displayed in Figs. 7�a� and 7�b�. Linear fits
using the first 10 reaction times indeed show that the FPU-�
has a marginally larger velocity �14.22�0.28 km /s� than
the harmonic chain �12.88�0.57 km /s�, thus showing that
large deformations are required to distinguish between the
two lattices.

FIG. 6. �Color online� Com-
parison of reaction velocities for
�a� �4, �b� FPU, and �c� harmonic
lattices for 3 EM/bead �Ea

=35 kcal /mol, �=0.7�. Similar
velocities are predicted for the
FPU and harmonic cases, which
are depicted in �d� for two differ-
ent loadings. The insets in �a�–�c�
show the probability cutoffs
�0.90� that decided the number of
viable reactions.
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D. Effect of Defects

Defects were introduced in the harmonic chain of oscilla-
tors by lowering the bond-stretch and bending force con-
stants by a factor of 50 at select locations: 320 and 650 Å
�Figs. 8�a� and 8�b��. In a real nanotube, such a defect could
represent a missing atom or a weaker carbon-carbon bond.
The simulations were run for the three reactive groups/bead
case and can therefore be compared with the conversion plot
for the pristine chain in Fig. 3�a�. The contour plot in Fig.
8�a� shows a distinct reduction in conversion with the pres-
ence of defects in comparison to Fig. 3�a�. It is interesting to
note that the average conversion at Ea=40 kcal /mol is
around 70% even at �=1, whereas it was �1 for the nonde-
fective chains under similar circumstances. In addition, Fig.
8�b� shows that the very first defect in both cases drastically
reduces the probability of reactions further down the length
of the chain �inset�. The reaction wave is disrupted by the

defect at 320 Ǻ; all the subsequent reactions shown in a
lighter hue in the primary plot are comparatively rare events.
The use of free boundary conditions at both ends of the chain
results in more energetic beads at the extremes as compared
to the central portion of the lattice,44 and sometimes reac-
tions at the end of the chain appear more likely than those in
the center. Thus, defects may serve as a practical consider-
ation making it difficult to experimentally realize these chain
reactions in practice.

IV. CONCLUSIONS

We have a proposed a generic 1D nanostructure as a chan-
nel for directed energy transfer following chain reactions of

energetic molecules attached to the lattice. Stability studies
at four loadings of the EM showed that these assemblies are
inherently unstable at activation energies below 25 kcal/mol.
This sets a lower limit in the choice of EM during the design
phase. A parametric study of chain reactions in both linear
and nonlinear lattices showed that at loads of 3–4 EM/bead
�Ea=35 kcal /mol, �=0.7�, the FPU and harmonic lattices
behaved similarly with reaction velocities ranging between
8–8.5 km/sec. The �4 lattice exhibited lower conversions
along with the formation of a start-up zone where the reac-
tion wave velocity was at least half of the bulk value at the
aforementioned loads. Fourier analyses of the kinetic energy
traces of the �4 lattice revealed that only high-frequency
�i.e., high-energy� excitations led to viable wave propaga-
tion, which explains the prominence of the start-up zone at
lower loadings of the energetic molecules. A similar study of
the harmonic lattice KE indicates that the high-frequency
modes contribute to reaction while the lower modes are con-
cerned with energy propagation. Reaction velocities and as-
sociated confidence intervals have been computed for both
pristine and defective harmonic chains. The latter show
lower reactivities, as expected, due to poorer information
transfer along the lattice—a direct consequence of the pres-
ence of defects.
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